
International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 1316
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Improving the Performance of DRTS by Optimal
Allocation of Multiple Tasks under Dynamic Load

Sharing Scheme
Urmani Kaushal, Avanish Kumar

Abstract—Task allocation over distributed real time system, for parallel applications, is a vital segment, where policy for task
allocation should be chosen in very appropriate manner. By efficient allocation of the tasks, the throughput and the overall pro-
cessor utilization can be maximized. Task allocation is NP-hard or NP-complete problem. To improve the performance of the
system, a new heuristic has been suggested and implemented in this paper. The number of modules which can be assigned on
the processor is limited and the memory is also having certain limit. So these two constraints have been taken into consideration
in the algorithm discussed in this paper. The dynamic load sharing policy has been used to improve the performance i.e. at the
time of assignment, the required constraints must be check and fulfilled. For clustering task k-mean clustering is used and the
proposed model is implemented in matlab.

.Index Terms— Task Allocation, Distributed Real Time System, parallel application, Cluster, throughput, processer utilization, NP-
complete, dynamic load sharing.

1 INTRODUCTION
distributed real-time system is a set of nodes connected
by a real-time communication network that interact with
each other in order to accomplish common task. The dis-

tributed real time system consists of a set of heterogeneous
computers interconnected via a communication network. Each
node has computation facility and its own memory while the
communication network has a limited communication capaci-
ty. DRTS have come out as a great platform for high perfor-
mance parallel applications [16]. The distributed computing
system which makes the computation distribution over the
nodes of the system has become very attractive because of the
escalating necessitate of processing power for scientific calcu-
lations. A large range of studies has shown that the work-
stations are idle form 33% to 78% of the time [11].

The high performance environments presented by
parallel and distributed computing system are much capable
to provide high capacity of processing. For realization of such
capacitative system, efficient task allocation algorithms and
load distribution schemes must be employed in a very effi-
cient manner. It is not the fact that the computing power of a
distributed system increases proportionally with the number
of processors involved. It should be taken care that the proces-
sors in the system should not be overloaded or idle [14].
The basic function of load distributing algorithm is to transfer
load (tasks) from heavily loaded computers to idle or lightly
loaded computers. The load distribution is meant for perfor-
mance enhancement of a distributed system by the allocation
of workload over the distributed system optimally. Load dis-
tributed algorithms can be broadly characterized as static and
dynamic.

————————————————
• Urmani Kaushal is currently working as Assitant Professor in Department of

Physical & Computer Science in MITS University, Lakshmangarh Rajasthan,
India, PH-09549821277. E-mail: urmani10kaushal@gmail.com

• Avanish Kumar is currently working as Professor & HOD in Department of
Maths, Stats & Computer Applications in BundelkhandUniversity, Jhansi, In-
dia, PH-09935520565. E-mail: dravanishkumar@yahoo.com

In static load distribution algorithms, jobs are as-
signed to hosts without considering the runtime events using
a priori knowledge of the system probabilistically or determin-
istically. Dynamic load distribution algorithms use system
state information like workload and any factor that may affect
the choice of the most appropriate assignment to make deci-
sions for load distribution [15].

Theory of load distribution classifies the load distrib-
uting algorithms as load balancing and load sharing algo-
rithms. The load balancing algorithms equalize the loads at all
the processors of the system. It transfers tasks at very higher
rate than load sharing algorithms whereas in load sharing, the
tasks are transferred by taking all appropriate decisions. Here
once the tasks have been assigned to the particular node, it
will not be reallocated.

Two load sharing policies may be applied to react to
dynamic system change: dynamic placement, that allocates
programs according to the current system state, and migra-
tion, that moves processes according to system and applica-
tion. Load sharing is dedicated to long-lived applications [11].
Supports for parallel programming over workstations network
often ignore programs’ needs, real load conditions and users’
activities [12]. Optimaum load sharing strategies are very
hard to implement and are well-known as NP-complete. A
number of works concentrated on static allocation [5, 7, 8],
adapted for multiprocessor systems without interference be-
tween users or concurrent applications [11].

Here the objective is to maximize the overall performance
of the system by allocating the task to the appropriate node in
the system optimally. For enhancing the performance the sys-
tem, it must have an efficient mechanism for task allocation of
parallel application. A task allocation algorithm seeks an as-
signment that optimizes a certain cost function, for example
maximum throughput or processor utilization or minimum
turnaround time.

Multiple algorithms for task alloation in distributed compu-

A

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 1317
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

ting systems have been proposed in literature [3-8, 13]. The
existing task allocation algorithms may cause either deadlock
or starvation because of remote possibility of certain events at
the time of allocation of the modules to the processing nodes
that are already heavily loaded [9]. The task should be allocat-
ed to a processor in such an effective manner that the inter
task communication cost may be passed up and the require-
ments for the task execution must be met by the allocated pro-
cessor. The execution time of a particular module on a particu-
lar node will depend on the number of modules already exe-
cuting on that particular node i.e. the maximum number of
modules which can be assigned to any processing node must
be considered. The memory capacity of the processing node
determines if a module is to be accommodated onto the node
or not.

2 PROBLEM FORMULATION
In a Distributed Real-Time System, a task is allocated to a pro-
cessor in such a way that inter task communication cost can be
minimized and execution requirements of the task must suit
the capabilities of the processor. The number of modules
which can be assigned on the processor is limited and the
memory is also having certain limit. So these two constraint
should be taken into consideration in the algorithm discussed
in this paper, which provide an optimal solution for assigning
a set of “m” tasks of a program to a set of “n” processors
(where, m > n) in a Distributed Real-Time System with the goal
to maximize the overall throughput of the system. The objec-
tive of this problem is to enhance the performance of the dis-
tributed real time system by making optimal utilization of its
processors and suitable allocation of tasks.

2.1 Notations
T : the set of tasks of a parallel program to be executed.
P : the set of processors in DRTS.
n : the number of processors.
m: the number of tasks formed by parallel application .
k: the number of clusters.
ti : ith task of the given program.
Pl : lth processor in P.
ecil : incurred execution cost (EC), if ith task is executed on lth
processor.
ccij : incurred inter task communication cost between task ti
and tj , if they are executed on separate processors.
X: an allocation matrix of order m*n, where the entry xil = 1; if
ith task is allocated to lth processor and 0; otherwise
CI : cluster information vector.
ECM (,) : execution cost matrix.
ITCCM (,) : inter task communication cost matrix.

2.2 Data Structures & Definations Used
We are proposing new data structure MMSV (Module &
Memory Status Vector) and MMSV Table to manage the mul-
tiple tasks execution in a DRTS [17]. Description of the data
structures are as follows:

2.2.1 MMSV:
It is a vector having status information of a single processor.
Elements of MMSV are shown in Table 2.1. Element “Processor
ID” is representing the processor unique name in the system.

TABLE 1: MMSV STRUCTURE
S.No. Notations Description

1. Pl Processing Node
2. Nl Maximum Number of Modules al-

lowed on Processing Node Pl
3. Ml Maximum Memory Limit of Pro-

cessing Node Pl
4. x Number of Module Assigned to the

Processing Node Pl
5. y Number of Available Module on Pro-

cessing Node Pl (Nl -x)
6. f(z) Memory Available

Total number of module assigned to the processing node Pl
can be calculated as follows:

y = Nl − x (1)
Total memory cost of processing node can be achieved by fol-
lowing cost function

f(z) = Ml − ∑ (zx)x
x=1 (2)

zx Memory required by xth Module.
Ml Maximum Memory Limit of Processing Node Pl

2.2.2 MMSV Collection
MMSV’s collection, Table 2 is the group of MMSV of all the
processing nodes in a DRTS. It will form a table shown in Ta-
ble 2.2. The memory capacity & module capacity (Available
Module Capacity) of the processor decide whether a module is
to be accommodated onto the processor or not.
2.2.3 Definitions
2.2.3.1 Execution Cost (EC)
The execution cost ecil of a task ti, running on a processor Pl is
the amount of the total cost needed for the execution of ti on
that processor during process execution. If a task is not exe-
cutable on a particular processor, the corresponding execution
cost is taken to be infinite (∞).
2.2.3.2 Communication Cost (CC)
The communication cost (ccij) incurred due to the inter task
communication is the amount of total cost needed for ex-
changing data between ti and tj residing at separate processor
during the execution process. If two tasks executed on the
same processor then ccij = 0.
2.3 Assumptions
To allocate the tasks of a parallel program to processors in
DRTS, we have been made the following assumptions:
2.3.1 The processors involved in the DRTS are heterogeneous
and do not have any particular interconnection structure.
2.3.2 The parallel program is assumed to be the collection of
m- tasks that are free in general, which are to be executed on a
set of n- processors having different processor attributes.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 1318
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

TABLE 2: MMSV’S COLLECTION

Processor No. of Modules
(Maximum)

Memory Capacity
(Maximum)

Module Assigned Available Modules Capacity Memory Available

P1 N1 M1 Maximum x module from m
tasks

y f(z)

P2 N2 M2 Maximum x module from m
tasks

y f(z)

P3
.

.

N3
.

.

M3
.

.

Maximum x module from m
tasks

.

.

y
.

.

f(z)
.

.

Pn Nn Mn Maximum x module from m
tasks

y f(z)

2.3.3 Once the tasks are allocated to the processors they reside
on those processors until the execution of the program is com-
pleted. Whenever a group of tasks is assigned to the processor,
the inter task communication cost (ITCC) between them is ze-
ro.
2.3.4 Total number of clusters is equal to total number of pro-
cessors.
2.3.5 Data points for k-mean clustering will be collection of
vectors which represents the execution cost of the task tm on
each processor.
2.3.6 Number of tasks to be allocated is more than the number
of processors (m>>n) as in real life situation.
2.4 Proposed Mathematical Model for Task Allocation
In this section, we have developed a task allocation model to
get an optimal system cost so that the system performance
could be enhanced. We can achieve this objective by making
task allocation properly. Therefore, an efficient task allocation
of parallel application’s tasks to processor is crucial. However,
obtaining an optimal allocation of tasks of parallel application
to any arbitrary number of processors interconnected with
non-uniform links is a very complex problem.
Hereafter, in order to allocate the tasks of such program to
processors in DRTS, we should know the information about
the input such as tasks attributes [e.g execution cost, inter task
communication cost etc]. While obtaining such information is
beyond the scope of this paper therefore, a deterministic mod-
el that the required information is available before the execu-
tion of the program is assumed. In the present task allocation
model, processor execution cost and task clustering has been
considered for this system.
2.4.1 Execution Cost (EC)
The task allocation given as: S: T→P, S (i) = l. For the task allo-
cation S, the execution cost ecil represents the execution of task
ti on processor Pl and it is used to control the corresponding
processor allocation. Therefore, under task allocation S, the
execution of all the tasks assigned to lth processor can be
computed as:

EC(X) = ��𝑒𝑒𝑖𝑙𝑥𝑖𝑙

m

i=1

n

i=1

 (3)

2.4.2 Task Clustering

Evaluation of cluster compactness as the total distance of each
point (task vector of n dimension) of a cluster from the cluster
mean which is given by [19], Zki

��Xi-𝑋k�2

xiICk

= �Zki

𝑚

𝑖=1

�Xi-𝑋k�2 (4)

Where the cluster mean is defined as 𝑋k = 1
𝑚k
∑ XixiICk

 and 𝑚k =
∑ Zki
𝑚
𝑖=1 is the total number of points allocated to cluster k. The

parameter Zki is an indicator variable indicating the suitability
of the ith data point Xi to be a part of the kth cluster.
The total goodness of the clustering will then be based on the
sum of the cluster compactness measures for each of the k
clusters. Using the indicator variables Zki , we can define the
overall cluster goodness as:

εk = ��Zki

𝑘

𝑘=1

�Xi-𝑋k�2
𝑚

𝑖=1

 (5)

Here 𝑋k should be found in such a manner that the value of εk
can be minimized.
2.4.3 Processor Utilization
The purpose of the proposed model is to maximize the utiliza-
tion of processors. This may increase by balancing the load on
each processor. The processor utilization of a processor can be
obtained by dividing the load on that processor, incurred due
to the execution of the tasks assigned to it only, to the heaviest
loaded processor. Let the calculated load on each of the pro-
cessor Pl be wl, and it is given by 𝑤l = ∑ 𝑒𝑒𝑖𝑙𝑚

𝑖≈1 𝑥𝑖𝑙. New utiliza-
tion of each processor is calculated as:

PU(Pl) = wl

max (wl)
 (6)

and the average processor utilization (APU) is calculated as:
APU = [PU(1) + PU(2)+. +PU(n)/n. (7)

3 PROPOSED TASK ALLOCATION TECHNIQUE AND AL-
GORITHM
3.1 Technique
The problem addressed in this paper of tasks allocation of a
parallel application onto the processors of a DRTS to enhance
the performance of the system have a set P = {P1, P2, P3,
…….Pn} of ‘n’ processors and a set T = {t1, t2, t3, …….tm} of ‘m’
tasks. The processing time of each task to each and every proces-
sor is known and it is mentioned in the Execution Cost Matrix ECM

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 1319
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

(,) of order m x n. The communication cost of task is also
known and is mentioned in Inter Task Communication Cost
Matrix ITCCM (,) of order m x m.

To enhance the performance of the system the total system
cost should be minimized. For the minimization of total sys-
tem cost we will form the clusters of tasks. We have m tasks to
be processed over n processors (m>n), so k clusters should be
formed. For clustering we will use k-mean clustering algo-
rithm. Here we have m vectors of task to be placed in k clus-
ters. Find k initial points (number of points in cluster is equal
to the number of clusters) for each cluster represented by task
vector that are to be clustered. These points represent initial
clusters called centroids. Assign each task vector to the cluster
that has the closest centroid. When all task vectors have been
assigned, recalculate the positions of k centroids. Repeat the
work of assignment and recalculation of centroid’s positions
until the centroids no longer move. This produces a separation
of the task vectors into clusters from which the metric to be
minimized is calculated by using equation (4).

Modify the ECM(,) according the k clusters by adding the pro-
cessing time of those tasks that occurs in the same cluster.
Modify the ITCCM(,) by putting the communication zero
amongst those tasks that are in same cluster. By applying al-
gorithm proposed in [18], we get the optimal assignment as
well as execution cost and communication cost. For optimal
assignment of clusters of tasks will be computed as

𝐸𝐸(𝑋) = �� ecil xil

𝑚

𝑗=1

𝑛

𝑖=1

 (8)

𝑤ℎ𝑒𝑒𝑒, 𝑥𝑖𝑗 = � 0,𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
1 𝑖𝑓 𝑖𝑡ℎ 𝑡𝑎𝑠𝑘 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑗𝑡ℎ 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟

The objective function to calculate optimal system cost is as
follows:

Total Cost = EC + CC (9)

3.2 Proposed Algorithm

The algorithm consists of following steps:

Step-0: Start
Step-1: Read the number of processors in n
Step-2: Read the number of tasks in m
Step-3: Repeate for each task

Read the number of modules in the task in l
Read the ECM(,) of the task of order l x n
Combine this ECM(,) with CECM(,)

Step-4: Read number of clusters in k (in this case it equal to
number of processors)
Step-5: Read the Inter Task Communication Cost Matrix
ITCCM (,) for each task of order l x l
Step-6: Read the MMSV Collection and Memory Requirement
of each module
Step-7: Apply k-mean clustering algorithm on CECM (,)
Step-8: Cluster information is stored in Cluster Information
Matrix CIM

Step-9: For all clusters repeate
if the cluster can’t be assigned because of MMSV Col-
lection or Memory Requirment over any processor
Than

 mark it as restricted assignment
Step-10: Check if any of cluster can’t be assign because of
MMSV Collection or memory requirment over all processors
then
 Goto Step 7
Step-11: Modify the CECM (,) by adding the processing time
of tasks in each cluster
Step-12: Modify the ITCCM (,) by putting communication zero
amongst those modules which are in the same cluster
Step-13: Apply [18] algorithm on CECM (,)
Step-14: Modify MMSV Collection according the assignment
made in Step 13
 Step-15: Calculate Execution Cost, Inter Task Communication
Cost
 Step-16: Optimal Cost = Execution Cost + Inter Task Com-
munication Cost
Step-17: End

4 IMPLEMENTAION

An illuminating example has been considered as in [17] to
show the performance improvement of the distributed system,
as well as to test the proposed algorithm using this data set. It
is implemented in Matlab. It is assumed that the ITCC Matri-
ces, the Execution Cost Matrices and MMSV’s Collection Table
are given for every module of each task in units of time. Given
a set of three tasks with their corresponding modules T1(m11,
m21, m31, m41), T2(m21, m22, m32), T3(m13, m22, m33) and a set of
four processors {P1, P2, P3, P4}.

TABLE 3: EXECUTION COST OF MODULES OF THE TASK T1
 P1 P2 P3 P4

m11 10 20 5 25
m21 35 10 15 15
m31 10 15 25 10
m41 20 35 20 5

TABLE 4: EXECUTION COST OF MODULES OF THE TASK T2

 P1 P2 P3 P4
m12 20 5 35 10
m22 10 10 10 10
m32 15 10 20 15

TABLE 5: EXECUTION COST OF MODULES OF THE TASK T3

 P1 P2 P3 P4
m13 15 25 15 10
m23 30 40 25 20
m33 20 5 10 15

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 1320
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

TABLE 6: IMCC OF MODULES OF THE TASK T1
 m11 m21 m31 m41
m11 0 10 50 20
m21 0 10 50
m31 0 50
m41 0

TABLE 7: IMCC OF MODULES OF THE TASK T2
 m12 m22 m32
m12 0 5 10
m22 0 60
m32 0

TABLE 8: IMCC OF MODULES OF THE TASK T3
 m13 m23 m33
m13 0 5 40
m23 0 10
m33 0

TABLE 9: MEMORY REQUIREMENT OF MODULES IN UNITS

m11 m21 m31 m41 m12 m22 m32 m13 m23 m33
5 3 2 4 3 2 1 4 2 3

TABLE 10: MMSV’S COLLECTION

Processor No. of Modules
(Maximum)

Memory Capacity
(Maximum)

Module Assigned Available Modules Capacity Memory
Available

P1 4 10 4 10
P2 3 8 3 8
P3 4 9 4 9
P4 5 12 5 12

TABLE 12: CLUSTER INFORMATION

Cluster Clustered Modules Restricted Assignment Final Assignment
C - 1 m21, m33 - P3
C - 2 m31, m12, m32 - P2
C - 3 m11, m22, m13 P1 , P2 , P3 P4
C - 4 m41, m23 - P1

TABLE 11: STATUS OF MMSV’S COLLECTION AFTER ALLOCATION

Processor No. of Modules
(Maximum)

Memory Capacity
(Maximum)

Module Assigned Available Modules Capacity Memory
Available

P1 4 10 m41, m23 2 4
P2 3 8 m31, m12, m32 0 2
P3 4 9 m21, m33 2 3
P4 5 12 m11, m22, m13 2 1

TABLE 13: OPTIMAL SYSTEM COST

Processors Tasks Processor Load
Optimal System Cost

PU APU
EC ITCC EC + ITCC

P1 m41, m23 50

150 250 400

1

0.75
P2 m31, m12, m32 30 0.6

P3 m21, m33 25 0.5

P4 m11, m22, m13 45 0.9

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 1321
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

FIG. 1 OPTIMAL EXECUTION COST GRAPH

0 100 200 300 400 500 600

Vidyarthi et al. algorithm [17]

Proposed Algorithm

Total Execution Cost

FIG. 2 AVERAGE PROCESSOR UTILIZATION GRAPH

5 CONCLUSION

In this paper, we have considered the dynamic task allocation
problem considering load sharing scheme, a critical phase in
distributed system with the goal of minimizing system cost,
and maximizing the PU. The proposed model is based on an
effective clustering to reduce ITCC. We present a straightfor-
ward and efficient algorithm to obtain optimal values of the
objectives that we have considered in this paper. To measure
the performance of proposed model & algorithm, the same
example, present in Vidyarthi et al. [17] has been solved. In
this case, it shows that the system cost is minimized by 20 %
and the APU is maximized by 8.35 %. So by using this model
the optimal solution can be achieved at all the times.

ACKNOWLEDGMENT
We gratefully acknowledge support from Dean and faculty
members of Department of Physical & Computer Science,
FASC, MITS, Lakshmangarh, Sikar and Department of Math.,
Stats. & Computer Applications, Bundelkhand University,
Jhansi for the same.

REFERENCES
[1] Pereng-yi RICHARD MA, Edward Y.S.LEE, Masahiro TSUCHIYA, "A

Task Allocation Model for Distributed Computing Systems", IEEE Trans. on
Computers, Vol.C-31, No. 1, pp. 41-47, January 1982.

[2] Chien-Chung Shen, Wen-Hsiang Tsai, "A Graph Matching Approach to
Optimal Task Assignment in Distributed Computing Systems using a
Minimax Criterion", IEEE Trans. on Computers, Vol. C-34, No.3, pp.
197-203, March 1985.

[3] Wesley W Chu, Lance M.T.Lan, "Task Allocation and Precedence Rela-
tions for Distributed Real Time Systems", IEEE Trans. on Computers,
Vol. C-36, No.6, pp. 667-679 ,June 1987.

[4] Pradeep Kumar Yadav, M. P. Singh, Harendra Kumar “Scheduling Al-
gorithm: Tasks Scheduling Algorithm for Multiple Processors with Dy-
namic Reassignment”, Journal of Computer Systems, Networks, and
Communications, Vol. 2008, 2008.

[5] Kapil Govil, Avanish Kumar “A Modified and Efficient Algorithm for
Static Task Assignment in Distributed Processing Environment”, Inter-
national Journal of Computer Applications, Vol. 23, No. 8, June 2011.

[6] Kapil Govil, “A Smart Algorithm for Dynamic Task Allocation for Dis-
tributed Processing Environment”, International Journal of Computer
Applications, Vol. 28, No. 2, August 2011.

[7] P. K. Yadav, M. P. Singh, Kuldeep Sharma, “An Optimal Task Alloca-
tion Model for Sustem Cost Analysis in Heterogeneous Distributed
Computing Systems: A Heuristic Approach”, International Journal of
Computer Applications, Vol. 28, No. 4, August 2011.

[8] Anurag Raii, Vikram Kapoor, “Efficient Clustering Model for Utilization
of Processor’s Capacity in Distributed Computing System”, Internation-
al Journal of Computer Applications, Vol. 44, No. 23, April 2012.

[9] D.P.Vidyarthi, A.K.Tripathi, “Maximizing Reliability of Distributed
Computing Systems with Task Allocation using Simple Genetic Algo-
rithm”, J. of Systems Architecture, Vol. 47, pp. 549-554, 2001.

[10] Barak, A., Laden, O., & Yarom, Y. (1995). The NOW MOSIX and Its
Preemptive Process. IEEE Technical Committee on Operating Systems ,
7 (2), 5-11.

[11] Folliot, B., & Sens, P. (2008). “Load Sharing and Fault Tolerance Manag-
er.” In R. Buyya, High Performance Cluster Computing Architectures
and Systems (p. 841). Pearson.

[12] Geist, G. A., & Sunderam, V. S. Network Based Concurrent Computing
on the PVM System. Concurrency: Practice and Experience, vol 4, no. 4,
pp 293-311, 1992.

[13] Saxena, Pankaj & Govil, Kapil, “An Optimized Algorithm for En-
hancement of Performance of Distributed Computing System”, Interna-
tional Journal of Computer Applications, vol 64, no. 2, Feb 2013.

[14] Karim y. Kabalan, waleed w. Smari and jacques y. Hakimian, “Adap-
tive Load Sharing In Hetergeneous Systems: Policies, Modifications,
And Simulation”, I. J. Of simulation Vol. 3 No. 1-2, pp-89-100.

[15] Bubendorfer, Kris. Dynamic Load Distribution. 1996. 25 June 2013
<http://homepages.mcs.vuw.ac.nz/~kris/thesis/node11.html>.

[16] Kopetz, H. (1997). REAL-TIME SYSTEMS: Design Principles for Dis-
tributed Embedded Applications. Kluwer Academic Puplishers.

[17] Vidyarthi, Deo Prakash, et al. "Allocation of Multiple Tasks in DCS."
Vidyarthi, Deo Prakash, et al. Scheduling in Distributed Computing Systems
Analysis, Design & Models (A Research Monograph). Springer Sci-
ence+Business Media, LLC, 2009.
[18] A. Kumar, M.P. Sing, P. K. Yadav, “A Fast Algorithm for Allocating

Tasks in Distributed Processing System”, Proceedings of the 30th An-
nual Convention of CSI, Hyderabad, (1995), 347-358.

0.66
0.67
0.68
0.69

0.7
0.71
0.72
0.73
0.74
0.75

Vidyarthi et
al. algorithm

[17]

Proposed
Algorithm

APU

IJSER

http://www.ijser.org/

	1 Introduction
	2 Problem Formulation
	2.1 Notations
	2.2.2 MMSV Collection
	2.2.3 Definitions
	2.2.3.1 Execution Cost (EC)
	2.2.3.2 Communication Cost (CC)
	2.3 Assumptions

	Fig. 2 Average Processor Utilization Graph
	Acknowledgment
	References

